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Strict implication classically

Strict implication arises from prefixing material implication by a
modal necessity operator: 2(φ→ ψ).

Strict implication was Lewis’s original motivation for studying
modal logic, and kicked off the modern era of the subject.

In Kripke frames, each world is endowed with classical logic
and locally we have material implication.

Modal logics above S4 have an especially nice strict
implication, corresponding (via Gödel’s translation) to
intuitionistic logic.

Today’s talk: Effort to understanding which substructural
logics are logics of strict implication. Focus is on logics
without contraction, i.e., Γ, φ, φ ⊢ Σ / Γ, φ ⊢ Σ.
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Residuated lattices

Definition:

A (bounded, commutative, integral) residuated lattice is an algebra
(A,∧,∨, ·,→, 0, 1) such that

(A,∧,∨, 0, 1) is a bounded lattice.

(A, ·, 1) is a commutative monoid.

For all x , y , z ∈ A,

x · y ≤ z ⇐⇒ x ≤ y → z .

Residuated lattices give the equivalent algebraic semantics for
extensions of the Full Lambek calculus (with exchange and
weakening).

3 / 20



Strict implication and the heredity condtion
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Algebra valued frames and models
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Antichain labelings

Definition:

Let (X ,≤) be a poset, and let {Ax : x ∈ X} is an indexed
collection of residuated lattices sharing a common least element 0
and common greatest element 1. An antichain labeling is a choice
function f ∈

∏
x∈X Ax such that for all x , y ∈ X ,

x < y =⇒ f (x) = 0 or f (y) = 1.
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Poset products

Definition:

Let (X ,≤) be a poset and let {Ax : x ∈ X} is an indexed
collection of residuated lattices sharing a common least element 0
and greatest element 1. Set B = {f ∈

∏
x∈X : f is an ac-labeling}.

We define operations in B as follows. The operations ∧,∨, ·, 0, 1
are defined pointwise, and the operation → is defined by

(f → g)(x) =

{
f (x) →x g(x) if for all y > x , f (y) ≤x g(y)

0 otherwise.

The algebra B with these operation is called the poset product.
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Poset products as conuclear images

Let (X ,≤) be a poset and {Ax : x ∈ X} is an indexed collection of
residuated lattices sharing a common least element 0 and common
greatest element 1. Set B =

∏
x∈X Ax and define a map

2 : B → B by

2(f )(x) =

{
f (x) if f (y) = 1 for all y > x

0 if there exists y > x with f (y) ̸= 1.

Then 2 is a conucleus on the direct product. The conuclear image
coincides with the poset product:

B2 =
∏

(X ,≤)

Ax .
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The benefits of poset products

Realizing the algebras in a variety of residuated lattices as
(embedded into) poset products also realizes them as algebras
of strict implication, i.e. the implication is the boxed
implication with respect to some S4-type box operator.

This has been used to give modal translations for some
prominent substructural logics, e.g. the logic corresponding to
GBL-algebras.

Also useful for giving relational semantics for substructural
logics.
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What can we say about poset products?

We will start with a poset product

B =
∏

(X ,≤)

Ax

and explore what must be true of it. The first point to notice is
that the Heyting algebra of up-sets Up(X ,≤) always embeds in B;
if U ∈ Up(X ,≤) then

χU(x) =

{
1 if x ∈ U,

0 if x /∈ U.

In fact, this gives Up(X ,≤) as a complete perfect Heyting
subalgebra of B.
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What can we say about poset products?

Write HB for the complete Heyting subalgebra of B. An easy
calculation shows that if i ∈ HB and f ∈ B, then because products
and meets are computed pointwise

i · f = i ∧ f .

Also, there is always a least element of HB above an element of B
and dually:

f ↑ =
∧

{i ∈ HB | f ≤ i},

f ↓ =
∨

{i ∈ HB | i ≤ f }.
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What can we say about poset products?

Now for any f ∈ B, the set {x ∈ X | f (x) ̸= 0, 1} forms an
antichain that we denote by Sf . We can always define an antichain
labeling for a given p ∈ Sf by

fp(x) =


1 if f (x) = 1,

f (x) if x = p,

0 otherwise

It is easy to see that f =
∨

p∈Sf fp.

Definition:

Suppose A is a residuated lattice with a perfect complete Heyting
subalgebra HA. We say that x ∈ A is principal if x↑ is a completely
join-irreducible element of HA.
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What can we say about poset products?

The elements fp that give us the representation of f ∈ B as a join
of principals also satisfy another property: They are disjoint.

Definition:

Two principal elements x , y of A are said to be disjoint if x↑ ̸= y↑.

One can show that in any poset product, any join of disjoint
principal elements exists.
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What can we say about poset products?

There is one other notable way that HB interacts with B:

Proposition:

Suppose that i ∈ HB and f ∈ B. Then there exists j ∈ HB such
that i ∧ j ≤ f ≤ i ∨ j .
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Centered residuated lattices

We can abstract the properties we have just identified:

Definition:

A centered residuated lattice is a pair ⟨A,HA⟩ such that:

1 A is a bounded, commutative, integral residuated lattice.

2 HA is a perfect Heyting algebra and a complete subalgebra of
A such that ax = a ∧ x for all a ∈ HA, x ∈ A.

3 Each element of A is a join of principal elements, and the join
of each collection of disjoint principal elements of A exists.

4 For each a ∈ HA and x ∈ A, there exists b ∈ HA such that
a ∧ b ≤ x ≤ a ∨ b.
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A representation theorem

Theorem:

Let ⟨A,HA⟩ be a centered residuated lattice and let (J∞(HA),≥)
be the poset of completely join-irreducible elements of HA. Then
A ∼=

∏
(J∞(HA),≥)Ax for quotients Ax in the signature

{∧,∨, ·, 0, 1}.
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Applications

Particularly useful when HA is definable from the residuated
lattice signature alone (e.g. when all idempotents are in HA).

Of course, what we’d really like to think about are weakly
centered residuated lattices: Those that embed into centered
residuated lattices.

This can be thought of as a kind of completion-like
construction that adds joins of disjoint principal elements.
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Applications

For each n ∈ N, let Sn denote the subvariety of residuated lattices
axiomatized by:

1 anb = an ∧ b.

2 an → bn = (an → bn)2.

3 a ≤ bn ∨ (bn → an).

Further, for each n ∈ N denote by Cn the subvariety of Sn
axiomatized by (a → b) → (b → a) = b → a.

Theorem

Each member of Sn is weakly centered, hence embeds into a poset
product of simple n-potent residuated lattices. Each member of Cn

embeds into a poset product of simple n-potent residuated chains.
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Thank you!

Thank you!
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